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Abstract
The Hagberg–Perten falling number (HFN) method is the international standard used

to evaluate the damage to wheat (Triticum aestivum) grain quality due to preharvest

sprouting (PHS) and late maturity alpha-amylase (LMA). However, the HFN test

requires specialized laboratory facilities and is time consuming. Spectrometers were

known as a potential tool for quick HFN assessment, but none of the studies have val-

idated the assessment results across different datasets. In this study, an independent

validation was conducted using independent samples and spectral instruments. The

calibration set had 462 grain samples of 92 varieties grown at 24 locations in 2019

and examined using a near-infrared spectrometer. In the validation set, 19 varieties

collected from 10 locations in 2 years that experienced either PHS or LMA were

scanned with a hyperspectral camera. The association between spectra and HFN was

modeled by partial least square regression. As a result, the independent validation

correlation accuracy was r = 0.72 and a mean absolute error of 56 s. Furthermore,

this study showed a cost-effective alternative using only 10 spectral bands to predict

HFN, and it achieved better performance than the full spectrum of the hyperspectral

system. In conclusion, this is the first study that showed the potential that wheat HFN

could be predicted on an independent dataset measured by a different instrument.

The result suggested that spectrometers can potentially serve as a faster alternative

for plant breeders to develop varieties resistant to PHS and LMA, and for growers to

screen damaged grains in transportation processes.

Abbreviations: BLINK, Bayesian-information and Linkage-disequilibrium
Iteratively Nested Keyway; GLM, generalized linear model; HFN,
Hagberg–Perten falling number; HSI, hyperspectral image; LMA, late
maturity alpha-amylase; NIR, near-infrared; PHS, pre-harvest sprouting;
PLS, partial least square; PLSR, partial least square regression; WL,
wavelength; WN, wavenumber.
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1 INTRODUCTION

The Hagberg–Perten falling number (HFN) test was devel-
oped to assess α-amylase activity in breaking down wheat
(Triticum aestivum) starch for the wheat industry (Hagberg,
1960, 1961). This breakdown, attributed to sticky flour, can
cause problems for manufacturing pipelines and poor quality
of end products (reviewed by Bettge, 2018; Ross & Bettge,
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2009). As a result, wheat flour with a low HFN can lead to
large economic losses in an industry that is already structured
on a low-profit margin. In Australia, low HFN led to a loss
of up to $40 per ton for Australian wheat harvested in 1983
and 1984 (Bettge, 2018; Ross & Bettge, 2009). In the western
United States, the wheat grain industry lost $140 million due
to low HFNs in 2016 (Campbell, 2017).

Pre-harvest sprouting (PHS) and late-maturity α-amylase
(LMA) are two major causes of low HFN. Pre-harvest sprout-
ing is induced by rain or high humidity before harvest. Once
the required moisture level is achieved, the germination pro-
cess will be triggered, producing hydrolytic enzymes to break
down starch and provide energy to support the germination
(Mares & Mrva, 2014). Late-maturity α-amylase is a response
to temperature shock during the maturation phase of grain
development without visible sprout damage (Farrell & Ket-
tlewell, 2008; Mares & Mrva, 2008). Both cold shock (Gale
et al., 1987; Major, 1999) and heat shock (Major, 1999;
Randall & Moss, 1990) have been reported to trigger LMA.

Due to these significant economic losses, the HFN test has
recently come under increased scrutiny. The time-consuming
nature of the traditional HFN test (typically 10 min between
successive analyses) only allows a small portion of grain to be
tested; such limitation can misrepresent the damage of a whole
field or a load. One alternative to the HFN test is an enzyme-
linked immunosorbent assay (ELISA) that detects α-amylase
in wheat grain extracts using antibodies specific to α-amylase
isozymes (Skerritt & Heywood, 2000; Verity et al., 1999). The
ELISA approach can be faster than the HFN test, but it still
requires a laboratory setting and is not suitable for field use.
Besides, the ELISA test was reported to have batch-to-batch
errors and is not reproducible in a new batch of samples (Neoh
et al., 2021).

Given the difficulty in measuring HFN, developing a non-
destructive, rapid, and accurate method to measure FN is
highly desirable. Spectroscopy has been proposed to be the
promising alternative that meets these requirements. Specific
near-infrared (NIR) wavelength ranges, which cover from
850 to 1700 nm, have been reported to be able to charac-
terize different levels of sprouted wheat kernels (Chen et al.,
2014). Though there is no direct discussion of the connection
between the spectral characteristics and low-HFN conditions
(i.e., LMA or PHS) in this study, this work indicates the poten-
tial of NIR spectroscopy to assess the sprouting damage of
kernels, which is an important factor in reducing HFN. In
addition to in-lab studies, one study has investigated the in-
field performance of a NIR sensor. The results suggested a
correlation (r) accuracy of 0.84 and a standard error of 37
s in fitting a model predicting HFN (Risius, 2014). Besides
NIR spectroscopy, imaging techniques, which have 2D spatial
information, have also been studied to identify kernels with
low HFN. X-ray imaging (Neethirajan et al., 2017) and ther-
mal imaging (Vadivambal et al., 2011) systems were shown

Core Ideas
∙ This study is the first to validate a calibrated spec-

troscopy model of Hagberg–Perten falling number
on an independent dataset.

∙ Spectral selection is a cost-effective strategy for
replacing hyper spectrometers in predicting falling
numbers.

∙ The unsupervised selection strategy presented in
this study performed better than the supervised
approaches.

∙ The presented model has a validation accuracy of
r = 0.72, but a high bias of 56 seconds.

∙ Application of the spectroscopy model to a hyper-
spectral image of wheat kernels revealed biological
insights.

to identify sprouted kernels yielding a correlation accuracy of
0.9 on kernel density and surface temperature, respectively.
However, these imaging techniques are not suitable for field
use due to the high cost and the need for a trained operator.
Thanks to the development of sensor technology, hyperspec-
tral imaging (HSI) systems, where every image pixel has a
full spectral signature consisting of hundreds or thousands
of spectral bands, have become more affordable and have
been considered as an approach to extract more complex
information. Many recent studies have demonstrated HSI sys-
tems’ advantages in predicting FN-related traits. Xing et al.
(2011)used a short-wavelength infrared HSI system that cov-
ers from 1000 to 2500 nm to predict α-amylase enzyme
activity with a high correlation accuracy of 0.94. The classifi-
cation of sprouting damage in wheat kernels was also reported
with good accuracy using the HSI system (Armstrong et al.,
2016; Zhang et al., 2020). Additionally, the direct association
between the HSI-derived characteristics and Hagberg FN was
investigated (Barbedo et al., 2018; Caporaso et al., 2017; Del-
wiche et al., 2018). Barbedo et al. divided the collected wheat
samples into five groups with HFN ranging from 0 to 70 s, 70
to 150 s, 150 to 250 s, 250 to 350 s, and 350 s and above,
respectively. The HFN groups were distinguishable under the
HSI system covering from 528 to 1785 nm (Barbedo et al.,
2018). Caporaso et al. (2017) also reported a promising cali-
bration accuracy (r) of 0.77 using an HSI system with a more
comprehensive spectral range (900–2500 nm). However, Del-
wiche et al. (2018)pointed out that good prediction results can
only occur in single or multiple homogenous environments.
The results were hardly validated across environments with
different climatic conditions.

Therefore, this is the first study that validated the poten-
tial of using spectrometers to predict HFN on an independent
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dataset. The independent samples for the validation were
collected by a different spectral instrument that measures
hyperspectral images. We specifically addressed three objec-
tives in this study: (1) the transferability of an HFN calibrated
model in a new environment, new variety, and a different spec-
tral instrument; (2) the model performances using a subset of
bands; (3) the spectral patterns of kernels with different low-
HFN conditions in hyperspectral images. The results of this
study will provide a better understanding of the potential of
leveraging spectroscopy techniques to predict HFN in wheat
kernels.

2 MATERIALS AND METHODS

2.1 Grain samples

The calibration and validation samples were collected from
the multi-environment wheat variety trials, which were con-
ducted by Washington State University Extension Cereal
Variety Testing and USDA-ARS (www.smallgrains.wsu.edu,
www.steberlab.org). The calibration dataset included 462
samples of unbalanced combinations from 92 varieties and
24 locations grown in 2019. Each sample had three NIR-
scanned replicates, and each replicate contained 2 g of wheat
kernels.

To independently validate the model predictability, 39 sam-
ples were collected from different locations and years to form
a validation dataset. The validation samples comprised 19
varieties and 10 locations grown in 2018 and 2019. Half-
grain α-amylase assays with the PhadebasTM Amylase Assay
Kit (Pharmacia) were used to determine the cause of reduced
HFN in validation samples. The assays are microspheres
chemically bound to a blue dye, which will be released when
the microspheres are hydrolyzed by α-amylase. Measuring the
absorbance of the blue solution is a measure of the α-amylase
enzymatic activity. Based on past studies, PHS-affected grain
had much higher α-amylase activity at the embryo end of the
grain, and LMA-affected grain had similar α-amylase levels at
both ends (Mares et al., 1994; Mrva et al., 2006). The presence
of visible sprouting was also used to identify PHS-affected
grain. The details of the locations, years, and varieties of both
datasets are shown in Tables S1 and S2.

2.2 Acquisition of spectral information

Hyperspectral information for the calibration and validation
datasets was collected using whole kernels (Figure 1). In the
calibration set, each sample consisted of 2 g of kernels and
was scanned in a glass jar (Figure 1a). Three jars of ker-
nels were scanned as replicates. The scans were conducted by
a Fourier Transform Near-Infrared spectroscopy instrument

(MATRIX-I, Bruker optics), which covered a wavenumber
range of 12,500 cm−1 (800 nm) to 3600 cm−1 (2778 nm)
and had an average spectral resolution of 1.71 nm resulting in
1154 spectral spectra. The measurement results were exported
by Spectral Acquisition and Processing Software (OPUS 7.2,
Bruker optics), and the data dimension was 1386 (i.e., three
replicates of 462 samples) data points by 1154 spectra.

In the validation set, spectral information was collected
using an HSI system assembled in the USDA Beltsville
laboratory and described in (Delwiche et al., 2019). The
hyperspectral imaging system consisted of an imaging spec-
trograph (SWIR Hyperspec, Headwall Photonics), an InGaAS
focal-plane array camera (320 × 256 pixels, 14-bit A/D,
Model Xeva-1.7-320, Xenics) with a 25-mm zoom lens
(Optec, Model OB-SWIR25/2), two glass fiber (low-OH)
optic bundles for directing light from separate DC-regulated
150 W quartz tungsten halogen light sources (Dolan Jen-
ner, Model DC-950) to the imaging enclosure, and a stepper
motor movable stage (Velmex, Model XN10-0180-M02-21)
that moved the seeds across the field of view. At an average
wavelength spacing of 4.8 nm, 150 spectral wavelengths were
recorded and spanned a wavelength range of 936–1654 nm.
The spectral data are stored in a hyperspectral image per sam-
ple with a dimension of 320-pixel width × 540-pixel height ×
150 spectra. Each sample image contains 4 g of ∼200 ker-
nels (Figure 1b). A contour-searching algorithm (Bradski,
2000) was used to identify kernels in the images. And a 150-
band vector representation of each kernel was obtained by
averaging all pixel values in the kernel-contour region.

As the two spectrometers had different spectral resolu-
tions and ranges, three adjustments were made to make the
two datasets comparable. First, the two datasets were unified
by truncating the spectra to the spectral range of 1000–
1654 nm shared by both datasets. The spectra between 936 and
1000 nm, which show fluctuating signals over another spectral
region, were excluded to avoid noise interference. Second, the
calibration and validation dataset measures signals in uniform
wavenumber (WN) increments (cm−1) and uniform wave-
length (WL) increments (nm), respectively. To unify the units,
the WN reads were converted from the calibration dataset to
WN by a simple conversion formula:

WL in nm = 107∕ WN in cm−1

Last, to deal with different spectral resolutions, every 2 nm
wavelength was binned to one spectrum. Because the spec-
trometer in the calibration dataset has a higher resolution than
the validation dataset, which missed some wavelength spec-
tra that only exist in the spectral region of the calibration
dataset. The missing spectra were represented by the nearest
wavelength spectra in the validation dataset. With the three
adjustments, the two datasets can share the same number of
spectral features (327 spectra) and range (1000–1654 nm).
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F I G U R E 1 Wheat samples in the datasets. (a) Samples in the calibration set were stored in a glass jar, and each jar was considered a sample
replica. Each replicate was scanned to acquire hyperspectral values and saved as a data point. (b) The validation set had kernels placed on emery
cloth and imaged by hyperspectral cameras.

2.3 Independent validation

The independent validation was conducted by first calibrat-
ing the prediction model on the calibration set, and the model
was then used to predict the validation set where the validated
samples were collected in different environments or varieties.
This validation was meant to evaluate the transferability of the
calibrated HFN model. The validation result was evaluated by
Pearson’s correlation coefficient (r) and mean absolute error
(MAE). In addition to validating the model performance using
the entire dataset, the evaluation was also conducted on the
subgroups of the datasets. The subgroups were defined by
the low-HFN conditions (i.e., LMA or PHS), environments
(i.e., location-year pairs), and varieties. The subgroup valida-
tion was able to evaluate if the model performance was based
on the HFN or the potential confounding factors, such as the
environment or variety.

2.4 Feature selection and permutation test

Except for the full model using all the available bands, we
also validate the performance of reduced models, where only
10 key bands were selected to be predictors of HFN. We
conducted supervised and unsupervised strategies to select
the key bands based on the calibration set. With the selected
bands, we derived a reduced model and evaluated its per-
formance on the validation set. There were two supervised
strategies in this study: The first strategy was to use a gen-
eralized linear model (GLM) to fit each band in a least
square regression with HFN as the response variable. The
regression coefficients of the fitted band have tested the

hypothesis that it was zero, which indicates that the fitted vari-
able has no significant association with HFN. This strategy
only considered a single-band effect on HFN without taking
collinearity between spectral bands into account; hence the
selected bands may be correlated with each other. The second
supervised strategy was Bayesian-information and Linkage-
disequilibrium Iteratively Nested Keyway (BLINK; Huang
et al., 2019). Linkage-disequilibrium Iteratively Nested Key-
way is a stepwise regression that tests a single band similarly
to GLM. However, BLINK effectively resolved the collinear-
ity problem by fitting the selected band from the first iteration
as linear covariates. It retested the association between
the band and HFN in the following iterations. With this
BLINK strategy, the selected bands were not only associ-
ated with HFN but also had reduced dependency among
predictors.

On the other hand, three unsupervised selection strate-
gies were conducted. The first strategy was to split the full
spectrum into 10 bins with equal wavelength ranges, and
the band located in the middle of the bin was selected. The
strategy simulated the bands measured by a spectrometer
with a lower spectral resolution. We named this strategy
Low-Res hereafter. The second strategy used Ward’s agglom-
erative clustering algorithm (Ward, 1963) to derive 10 groups
from the spectrum. Similar to the first strategy, the band
located in the middle wavelength position of each group was
selected. This clustering algorithm clustered bands based on
the Euclidean distance among samples. Because it is a hier-
archical clustering algorithm, where only adjacent spectra are
clustered into the same group, the clustering algorithm was
implemented using the function AgglomerativeClustering in
the Python library scikit-learn (Pedregosa et al., 2011). The
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third unsupervised strategy derived the second derivatives of
reflectance with respect to wavelength, quantifying the sig-
nal change over the spectrum. The top 10 spectral bands
with local maxima in the second derivative were selected.
Local maxima were identified by a peak searching algorithm
provided by the R package, pracma (Borchers, 2021). This
approach was noted as second derivative hereafter.

The five selection strategies were examined by a permu-
tation test. This is a statistical test to examine whether the
proposed approach is significantly better than random selec-
tion. We derived a reduced model that used 10 randomly
selected bands as predictors. The model was then used to pre-
dict the validation set. The process was repeated 10,000 times,
and the 10,000 prediction accuracies formed an empirical
null distribution. The prediction accuracies of the full model
and the five different reduced models were tested against the
null distribution. If the proposed model performs better than
9500 out of 10,000 random selections (p value < 0.05), the
selection strategy was considered significantly better than ran-
dom selection. The permutation test was implemented using
the function permutation_test_score in the Python library
scikit-learn (Pedregosa et al., 2011).

2.5 Partial least square regression

Partial least square regression (PLSR; Wold, 1980) is a
method that transforms data into latent dimensions where the
covariance of the transformed regressors (i.e., spectral bands)
and the transformed response variables (i.e., HFN) are max-
imized. The advantage of this method is that it can reduce
the size of feature space to avoid large-p and small-n prob-
lems (Marimont & Shapiro, 1979), and it can remove the
redundancy among feature space. It is especially useful with
hyperspectral data that have strong collinearity. We used the
same notations from Abdi (2003) to describe the PLSR model:

𝑌 = 𝑋
(
𝑃𝑇+)𝐵𝐶𝑇

where 𝑌 ∈ R𝑛×1 is the estimated response matrix and n is
the number of HFN observations; 𝑋 ∈ R𝑛×𝑝 is the regres-
sor matrix, where p is the number of fitted spectral bands;
𝑃 ∈ R𝑝 × 𝑞 is the loading matrix of 𝑋, where q is the number
of latent dimensions; 𝑃𝑇+is Moore-Penrose pseudo-inverse
of 𝑃𝑇 ;𝐵 ∈ R𝑞×𝑞 is the diagonal matrix of the regression coef-
ficients; and 𝐶 ∈ R1×𝑞 is the loading matrix of Y, which is
the original response matrix. In this study, p was 327 in the
full model and 10 in the reduced models. We transformed
the original regressor matrix X to the first 2 latent dimen-
sions, so the q = 2 in our study. In the calibration stage,
the regressors 𝑋𝑐𝑎𝑙𝑖 ∈ R1386×𝑝from the calibration set were
first standardized to have zero mean and unit variance. The
standardization scaler was stored and used to standardize the

regressors from the validation set. Then, we fitted the 𝑋𝑐𝑎𝑙𝑖

and 𝑌𝑐𝑎𝑙𝑖 ∈ R1386×1 to the PLSR model to find the optimal
parameters of B, C, and P. In the validation stage, we used
the fitted parameters to estimate the 𝑌𝑣𝑎𝑙𝑖𝑑 ∈ R39×1 from the
𝑋𝑣𝑎𝑙𝑖𝑑 ∈ R39×𝑝. The PLSR model was implemented using
the function PLSRegression in the Python library scikit-learn
(Pedregosa et al., 2011).

Additionally, we applied the calibrated PLSR model to map
the HFN in the hyperspectral images in the validation set.
Since every pixel is a spectrum of 327 bands (i.e., R1×327), we
used the same calibrated PLSR model to estimate the HFN for
every pixel. The pixel-level estimation of HFN allowed us to
visualize the spatial pattern of HFN on the kernel surface.

3 RESULTS

3.1 Data characteristics

The hyperspectral bands and HFN of both datasets are pre-
sented in Figure 2. We grouped the spectra based on whether
the sample had a measured HFN greater than 300 seconds,
and the spectra were found to be mostly overlapping between
the two groups (Figure 2a). The distribution of HFN in the
calibration set was skewed to the left, with a mean of 306.4
seconds and a standard deviation of 53.78 seconds. And it
covers a range from 63 to 460 seconds. On the other hand,
the validation set showed a smaller range of HFN from 107
to 445 seconds, and the mean and standard deviation were
256.6 seconds and 81.31 seconds, respectively (Figure 2b).
By examining the low-HFN conditions in the validation set, it
was found that 8 of 39 samples were affected by PHS, 21 were
affected by LMA, and 10 were not affected by either PHS or
LMA (noted as “sound” thereafter) (Table S2).

Additionally, the validation set was geographically mapped
in the map of Washington State, USA (Figure 3). Besides the
geography information, the validation samples were listed for
their varieties, observed HFN, errors of predicted HFN, and
low-HFN conditions. Most PHS samples were found in Cre-
ston in 2019, and the rest two PHS samples were collected
from Ritzville in 2018. Unlike other locations where only one
low-HFN condition, either PHS or LMA, was observed, both
types of low-HFN samples existed in the location of Ritzville.
In Ritzville, different varieties were found to have different
low-HFN conditions. For example, the variety Jasper had two
samples with PHS, and the variety KWS 147 was affected by
LMA. This result suggested a possibility that the low-HFN
conditions were not only affected by the environment but also
by the variety.

Combining both datasets, we applied principal component
analysis to obtain the first two principal components (PCs)
explaining 98.76% of the total variance in the hyperspectral
data. The first two PCs were used to represent the data in a
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6 of 15 CHEN ET AL.

F I G U R E 2 Overview of the dataset. (a) The line chart displayed the averaged spectrum of each sample represented by a line. There were 462
lines in the calibration set (top) and 41 lines in the validation set (bottom). Lines were colored in blue if the measured Hagberg–Perten falling number
(HFN) was greater than 300 seconds. Otherwise, the line was colored red. The wavelength coverage was from 1000 to 1652 nm. (b) The histogram
showed the HFN distribution among calibration (top) and validation (bottom) sets.

F I G U R E 3 Geographic distribution of the validation set in Washington State.
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CHEN ET AL. 7 of 15

F I G U R E 4 Principal component analysis (PCA) to visualize the spectral similarity among samples. Spectral values of each sample were
mapped as a dot on the x axis of the first principal component and the y axis of the second component. A sample was defined for kernels collected
from the same variety, same location, and same year. Variance explained by the component was shown in the parenthesis of each axis. Black dots
represented the samples from the calibration dataset. The remaining dots were from the validation set. They were colored red, green, and blue to
show the observed conditions of late maturity alpha-amylase (LMA), pre-harvest sprouting (PHS), and sound condition, respectively.

2D space, where the hyperspectral band of each sample was
represented by a point (Figure 4). In the space of the two PCs,
two datasets were found to be linearly separable, which sug-
gested that the different instruments would affect the spectral
pattern. In the validation set, the LMA samples were clustered
within the sound samples but separated from the PHS sam-
ples, which could suggest that the spectral characteristics of
the LMA samples were similar to the sound samples. We also
examined the autocorrelation of the spectrum in both datasets.
Both spectrums showed a two-cluster autocorrelation pattern:
the first cluster covered from 1000 to 1400 nm, and the sec-
ond cluster covered from 1400 to 1654 nm. Both the clusters
showed a strong autocorrelation higher than 0.95 (r), and the
lowest correlation between the clusters was 0.82 (r) (Figure
S1).

3.2 Independent validation

The full model calibrated on all 327 bands by a two-
component PLSR model achieved the validation accuracy (r)
of 0.72. To avoid overestimating the accuracies, we further
examined the validation in different group settings; the val-

idation samples were grouped by low-HFN conditions (i.e.,
LMA, PHS, and sound samples), environments, and varieties.
The accuracies in each group indicated that the prediction
model could explain the FN variation which was not derived
from either low-HFN conditions, environments, or varieties.
For example, if the correlation accuracies were both low in the
groups of PHS and LMA, it would suggest that the prediction
model was only capable of differentiating the conditions but
not the HFN itself. As a result, the full model performed sim-
ilarly on LMA (r = 0.81) and sound samples (r = 0.73). But
the accuracy was lower in the PHS samples, which was 0.39
(Figure 5). When the samples were grouped by the environ-
ment, except for the groups with less than three observations,
the accuracies were below 0.5 (Figure S2). Last, most variety
groups show high accuracies (r > 0.5). However, there were
only 5 of 19 variety groups with more than two observations;
this group setting needs more samples to be validated (Figure
S3).

Besides the correlation accuracy, the prediction error was
also examined. The MAE was 56 s; we performed an Analy-
sis of Variance (ANOVA) table to investigate further which
experimental factors contributed significantly to a higher
error. As a result, the error was found to be significantly
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8 of 15 CHEN ET AL.

F I G U R E 5 The prediction accuracies of the selected models in the independent validation (color-coded by Hagberg–Perten falling number
(HFN). The validation samples were colored green, red, and blue representing the condition preharvest sprouting (PHS), late maturity alpha-amylase
(LMA), and sound kernels, respectively. The results of the full model, the best-unsupervised model, Low-Res, and the best-supervised model,
Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK), were selected to demonstrate. (a) The predicted and
observed HFN were plotted in scatter plots. The regression lines were fitted by linear least squares. (b) The bar charts showed the correlation
accuracy within each condition.

affected by the observed HFN (p value < 0.001); as the
HFN increased, the error also increased (Figure 6). We also
explored two other potential factors that may affect the error:
(1) Whether the validated sample existed in the same year and
as the same variety of the calibration set. (2) The latitude and
longitude of the validated location. Surprisingly, the result
showed that there was no significant difference in the error
between the samples with the same year or variety with the
calibration set and those with different years and variety. But
the error was associated with the latitude (p value < 0.005;
Table 1).

3.3 Selection of key bands and the reduced
models

The validation was also evaluated by the reduced model,
which is a PLSR model using only 10 selected bands as pre-

dictors. The five selection strategies reported different sets
of key bands which were visualized in Figure 7. The Low-
Res strategy selected bands every 66 nm starting at 1030 nm
(Figure 7a). The clustering strategy indicated which wave-
length regions had variation among observed samples; there
were four clusters in the small range from 1347 to 1409 nm.
Two clusters were found from ∼1140 to 1230 nm (Figure 7b).
This result implies that these two regions may be distinct in
each sample but not necessarily associated with FN variation.
The 2nd derivatives (Figure 7c) were designed to find cur-
vature in spectral signals with respect to wavelength. There
were four peaks found to have optimum derivatives in the
regions from 1134 to 1240 nm and from 1386 to 1424 nm.
Generalized linear model, the fourth strategy, focused on the
association between the linear effects of a single spectral band
and the FNs. The tested score of each band was plotted as
a curve line (Figure 7d). Using this strategy, all significant
hits were in the range of 1344–1365 nm. Due to the strong
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CHEN ET AL. 9 of 15

F I G U R E 6 The prediction errors of the full model. The samples were colored by (a) the low-Hagberg–Perten falling number (HFN) condition,
(b) location, (c) variety, and (d) whether the sample variety was from the calibration set.

T A B L E 1 Analysis of variance (ANOVA) of the validation error.

Sum of squares Degrees of freedom F p value (> F)
in_calibration 1657.335792 1 1.091189 0.303578

FN 12,552.612528 1 8.264632 0.006926

Lat 12,808.818375 1 8.433318 0.006430

Lon 5758.498572 1 3.791392 0.059815

Residual 51,640.389822 34 − −

Note: The error variance was decomposed into a binary factor of whether the sample was the same variety from the calibration set (in_calibration), the observed falling
numbers (FN), latitude (lat), and longitude (lon).

collinearity of spectral data, the results of the GLM strat-
egy were easily trapped in the region with the highest testing
scores. In contrast to GLM, BLINK selects bands using
single-band information and collinearity. Bands with similar
information were included in the BLINK model and diversi-
fied the selection pool (Figure 7e). For example, the 1100 nm
region was shared with the 2nd derivatives, and the 1408 nm
region was also identified by the clustering strategy.

Overall, all the reduced models showed similar HFN pre-
diction performance to the full model. There was no difference
in the accuracies in the precision of two decimal places. The
best-supervised selection strategy was BLINK (r = 0.720),
and the worse was GLM (r = 0.718). On the other hand, with-
out considering the HFN, the unsupervised strategy Low-Res
performed slightly better (r = 0.721) than both the supervised
strategies and the full model. A permutation test was con-
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10 of 15 CHEN ET AL.

F I G U R E 7 Feature selection strategies. From the spectra covering 1000–1654 nm, 10 bands were selected and marked by red vertical lines. (a)
Low-Res: 10 bands were selected with an equal window. (b) Clustering: Hierarchical clustering algorithm was carried out to cluster 327 bands into
10 groups. The middle bands of each group were selected. (c) 2nd derivative: Second-order derivatives were computed. Bands with the highest
absolute value of derivatives were selected. (d) Generalized linear model (GLM): Bands were tested for an association with Hagberg–Perten falling
number (HFN) by a generalized linear model. (e) Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK): Bands
were tested for an association with HFN by iteratively including significant bands into the testing model. Meanwhile, bands with a high correlation
(r > 0.7) with other selected bands were excluded.

ducted where the reduced models were further examined with
a random model, which was a PLSR model using 10 randomly
selected bands as the predictors. Neither the reduced models
nor the full model showed a significant difference in the accu-
racies compared to the random model (p value > 0.05). The
best model was the reduced model Low-Res (p value= 0.178),
and the worse was the GLM (p value = 0.749; Figure 8). Dif-
ferent group settings were also used to examine the reduced
models. We compared the accuracies of the full model and
two reduced models. The reduced models were the Low-Res
and BLINK, which were the best unsupervised and supervised
models in our permutation, respectively. The Low-Res model
performed similarly to the full model in all group settings
(i.e., low-HFN conditions, environments, and varieties). And
the BLINK model showed similar performance except for
the group setting of low-HFN conditions; the BLINK model
showed a lower accuracy than the other two models in the PHS
samples (r = 0.12), LMA samples (r = 0.79), and the sound
samples (r = 0.66; Figure 5).

3.4 Spatial pattern in hyperspectral images

The spatial pattern distinguished samples with different low-
HFN conditions. The pixel-wise predictions of HFN were
plotted in a heatmap, and the gradient from high HFN
(>250 s) to low HFN (≤250 s) was color-coded using a
yellow-to-red scale (Figure 9). We used the varieties Jasper
and IDO 1808 as examples to illustrate the spatial pattern of
the predicted HFN. And the rest of the varieties were also dis-
played in the supplementary figure (Figure S4). As a result,
PHS-affected kernels were mostly covered by red pixels with
no obvious spatial tendency pattern. However, the distribu-
tion of red pixels had stronger tendencies in LMA and sound
kernels; as HFN increases, red pixels are prone to gather on
one end of the kernel. The tendency is stronger in IDO 1808
over Jasper when the kernels are affected by LMA environ-
ments. In IDO 1808, most LMA-affected and sound kernels
showed an accumulation of red pixels on only one side of
the kernel. It is also noted that high predicted HFN (yellow
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CHEN ET AL. 11 of 15

F I G U R E 8 A permutation test to validate the performance of the feature selection strategies in the validation dataset. The different strategies
were tested for the chance to perform worse than the models trained by 10 randomly drawn features (spectra). Red vertical lines mark the correlation
accuracies (r) on x axis and had tested p value (H0: Presented strategies have the same prediction results made by randomly drawn bands) labeled in
the parenthesis. The density function represents the null distribution of the permutation test.

pixels) was always observed on the kernel edges regardless
of the sample conditions or the variety. The kernel edges
reflected less light captured by the sensor, which was a conse-
quence of the Lambertian response for the diffuse reflection
(Delwiche et al., 2021).

4 DISCUSSION

4.1 Limitation and transferability

The presented model in this study has demonstrated a promis-
ing prediction accuracy (r = 0.72) of HFN on a distinct
dataset, which was characterized by a different spectral instru-
ment. However, the model had a mean absolute error of 56 s,
which was higher than the measurement error (20 s) in HFN
tests. This model only showed a low bias when the inspected
samples were in the HFN range of around 250 s(Figure 6).
Two potential sources contributed to this high-bias prediction.
As the two datasets were collected by different spectrome-
ters, the first potential source was the difference in the spectral
response (i.e., absorbance) of the two datasets. For example,
the peak absorbance near the region 1200 nm in the cali-
bration set was 0.75, while the peak absorbance in the same
region was 0.625 in the validation set (Figure 2a). This dif-
ference may introduce a bias when transferring the estimated

linear coefficients from one dataset to another. Although the
bias can be avoided by applying a standardization method to
the spectra, this approach may violate the motivation of this
study, where the validation set, or any new dataset, was not
available to be considered for the standardization. Hence, we
should expect such error as we applied the same standard-
izing scaler, which was derived from the calibration set to
the validation set. The second potential source of error is the
difference between the HFN distributions. The median HFN
in the calibration set and the validation set are 312 s and
255 s, respectively (Figure 2b). This 57-s difference cannot
be explained by linear combinations alone without trans-
forming both datasets to share the same distributions, which
can be characterized by descriptive statistics such as means,
standard deviation, medians, or ranges. This becomes a prob-
lem when there is a noticeable difference in the distributions
between the calibration and validation samples. This problem
was defined as “domain adaptation” and was well-discussed
by Ben-David et al. (2010). The solution to this problem
is identifying the conversion functions between datasets for
both labels and features, which refer to HFN and spectra in
this study, respectively. Therefore, to alleviate the concern of
domain adaptation, samples from the validated dataset must
be collected and labeled if the validated trial is known to have
a strong deviation from the calibration system. In conclusion,
given that the 20-s measurement error is a key benchmark for
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12 of 15 CHEN ET AL.

F I G U R E 9 Heatmap of pixel-wise predictions of falling numbers in the validation dataset. The varieties Jasper and IDO 1808 were visualized
for the spatial pattern of different conditions (Preharvest sprouting [PHS], Late maturity alpha-amylase [LMA], and sound). The color gradient,
which shows the predicted Hagberg–Perten falling number (HFN), is scaled from 0 to 500 and is colored from black, red, to yellow.

the community to consider if it is worth deploying this model
instead of conducting the traditional HFN tests, the presented
model can only be used as a screening tool to rank the samples
based on their predicted HFN values. The final HFN value still
needs to be confirmed by the traditional HFN test.

4.2 Spectra as predictors of HFN

Spectroscopy was used to predict the presence of molecular
substances which emit spectral signals from the vibrations
of chemical bonds. Near-infrared spectra, ranging from 800
to 2500 nm, were broadly used to identify objects such as
moisture and lipid contents in coffee beans (Caporaso et al.,
2018), or diagnose moldy peanuts (Jiang et al., 2016). How-
ever, compared to mid-range infrared (spectra in the range
from 2500 nm to 25 μm), the range studied in our study cov-
ering from 1000 to 1652 nm would have molecular excitation
caused by overtones (Manley, 2014). For example, ignoring
anharmonicity effects, signals detected around a wavelength

of 1100 nm could be overtones of its multiples, such as
2200 and 3300 nm. This fact implies that our studies in
the short-wavelength range, where spectral absorption is rel-
atively weak, may originate from wavelengths beyond our
instrument’s range. Including a wider and longer wavelength
range will allow us to validate the selected bands by their
wavelength multiples.

Our studies focused on the absolute reflectance of spectra
in predicting HFN, while there is another approach, which is
known as vegetation indices, to model the difference between
multiple spectra in the predictions. The approaches were pro-
posed in many different forms, such as Normalized Difference
Vegetation Index (NDVI) (Rouse et al., 1974) and Difference
Vegetation Index (DVI) (Tucker, 1979), and can be com-
monly seen in crop breeding studies (Tattaris et al., 2016).
In our studies, two spectrometers show different spectral pat-
terns across the spectrum (Figure 2a). The monitored changes
over different bands cannot be consistent from one dataset
to another. The hypothesis was validated by incorporating
the indices into the prediction models, and there was no
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CHEN ET AL. 13 of 15

improvement observed compared to the one using absolute
band reflectance alone. Hence, the model’s performance with
indices information was not demonstrated in this study.

4.3 PLSR in past works and hyperspectral
images

As PLSR is a linear model that can effectively remove the
autocorrelation among the predictors (i.e., spectra in our
case), the recent studies that leveraged spectroscopy to pre-
dict HFN were mostly based on PLSR (Caporaso et al., 2017;
Delwiche et al., 2018). This merit was also demonstrated in
our full model using two latent variables to fit 327 spec-
tral bands on 462 samples. With the two latent variables, the
model achieved a correlation accuracy of 0.72 and an MAE
of 56 s in our validation. This result was similar to Delwiche
et al. (2018) (MAE = 55.4 s) and slightly better than Capo-
raso et al. (2017) (r = 0.65; MAE = 63 s). It is worth noting
that the major difference between our validation and previous
studies was that it was conducted on a dataset collected by
a different spectrometer. This setting can reduce a potential
overestimation of the model performance. We also examined
the performance of the model in the calibration set. The per-
formance only had an accuracy of r = 0.38, which was poorer
than Caporaso et al. (2017) (r = 0.77) and Delwiche et al.
(2018) (r = 0.73). Our interpretation was that we only used
two latent variables that were fewer than the previous studies
which both used at least seven latent variables. More variables
used in a regression model can surely increase the calibra-
tion accuracy, but it may also lead to overfitting problems and
poor predictability on a new dataset. In our dataset, using two
variables was a good balance between the two extremes. The
model was able to explain the variation of HFN in the calibra-
tion set, but it was also capable of generalizing the prediction
on the validation set. To extend this idea, we also examined the
performance of an ordinary least square regression, where all
the 327 predictors were fitted to the calibration set. As a result,
the calibration accuracy was increased to r= 0.73, and the val-
idation accuracy was dramatically decreased to r = −0.06 as
expected (Figure S5).

It is interesting to see a spatial pattern in hyperspectral
images using the calibrated PLSR model. In Figure 9, the
red pixels represented a lower predicted HFN. As α-amylase
was known to be the major cause of low FN, it was hypoth-
esized that the red pixels might represent the indicators of
α-amylase distribution on the kernel surface. The synthesis
of α-amylase is known to be triggered by gibberellin accu-
mulated in the embryo during germination; when α-amylase
is present throughout the kernel, the samples will likely have
sprout damage and lower FN (Mrva & Mares, 1996; Mrva
et al., 2006). The synthesis process aligned with the observa-
tion in our hyperspectral images: The HFN of a kernel started

to decrease when red pixels were observed accumulating near
the embryo end of the kernel.

5 CONCLUSION

This is the first study that validated the potential of transfer-
ring a calibrated spectroscopy model of HFN to an indepen-
dent dataset measured by a different spectral instrument. The
independent validation shows a promising correlation accu-
racy r of 0.72, which was close to the previous studies that
used the same instrument in the validation. This study also
showed a cost-effective alternative that used only 10 bands to
predict HFN; the alternative achieved similar or better perfor-
mance than using the full spectrum of the current HSI system.
However, the presented model has a high bias of 56 s, which is
still not acceptable for the industry to replace the conventional
HFN test where the measurement error is 20 s. Considering
the validation was conducted on a small sample batch, the bias
is anticipated to be reduced by using a larger and more bal-
anced dataset that covers a wider range of environments and
varieties. In conclusion, this study suggested that using spec-
trometers has the potential to serve as a faster alternative for
plant breeders to develop varieties resistant to PHS and LMA,
and for growers to screen damaged grains in harvesting and
transportation processes.
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