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Abstract
Modern agriculture is a complex system that demands real-time and large-scale 
quantification of trait values for evidence-based decisions. However, high-
profile traits determining market values often lack high-throughput phenotyp-
ing technologies to achieve this objective; therefore, risks of undermining crop 
values through arbitrary decisions are high. Because environmental conditions 
are major contributors to performance fluctuation, with the contemporary 
informatics infrastructures, we proposed enviromic prediction as a potential 
strategy to assess traits for informed decisions. We demonstrated this concept 
with wheat falling number (FN), a critical end-use quality trait that signifi-
cantly impacts wheat market values but is measured using a low-throughput 
technology. Using 8 years of FN records from elite variety testing trials, we de-
veloped a predictive model capturing the general trend of FN based on biologi-
cally meaningful environmental conditions. An explicit environmental index 
that was highly correlated (r = 0.646) with the FN trend observed from variety 
testing trials was identified. An independent validation experiment verified 
the biological relevance of this index. An enviromic prediction model based on 
this index achieved accurate and on-target predictions for the FN trend in new 
growing seasons. Two applications designed for production fields illustrated 
how such enviromic prediction models could assist informed decision along 
the food supply chain. We envision that enviromic prediction would have a 
vital role in sustaining food security amidst rapidly changing climate. As con-
ducting variety testing trials is a standard component in modern agricultural 
industry, the strategy of leveraging historical trial data is widely applicable for 
other high-profile traits in various crops.
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1   |   INTRODUCTION

Modern agricultural industry is a sophisticated system 
encompassing research and breeding programs, crop field 
production, trade and insurance organizations, process-
ing factories, and end users (Council, 2015; Motes, 2010). 
Together, these sectors compose the food supply chain. For 
commodity crops, the chain begins with developing elite 
varieties through research and breeding programs. Seeds 
of elite varieties are then sold and planted in growers' pro-
duction fields. Harvested grain from different production 
fields are transported and sold to elevators, which serve as 
central hubs in the supply chain. Grain stored in elevators 
are distributed to manufacturing factories for processing. 
Final processed products are then distributed to end users 
through wholesale and retail.

Sustaining a complex system depends on timely and 
objective decisions (Lempert,  2002). To make informed 
decisions maximizing profits, accurate assessment of 
traits, especially high-profile ones determining crop 
market values, is of paramount importance. Crop per-
formance, jointly determined by internal genetic con-
stitutes, external environmental conditions, and their 
interactions, fluctuates because of varied weather condi-
tions and management practices across production fields. 
High-throughput, efficient, and cost-effective technol-
ogies to measure and monitor traits are ideal to assist 
decision-making (Watt et  al.,  2020; Yang et  al.,  2020). 
However, current assessments of most high-profile traits 
remain low-throughput, time-consuming, and expen-
sive. Without critically needed trait information being 
delivered in time, arbitrarily called decisions are inevi-
table, which poses significant risks of undermining crop 
value. Until high-throughput phenotyping methods are 
developed, developing predictive models capturing per-
formance trends could be a potential strategy to assist the 
decision-making process.

The term “envirome” is coined to define the total sets of 
environmental conditions affecting performance or state 
of an organism (Anthony et  al.,  1995). As rapidly chang-
ing climatic conditions threaten food security, enviromics 
is emerging as an essential component to be integrated 
into breeding strategies for crop improvement (Cooper & 
Messina,  2021, 2023; Crossa et  al.,  2021; Guo & Li,  2023; 
Resende et al., 2021; Xu, 2016; Xu et al., 2022). Identification 
of key environmental indices from the envirome allows for 
the explaination of complex patterns across environments 
(Guo et  al.,  2020; Li et  al.,  2018, 2021; Mu et  al.,  2021). 
Genomic prediction integrated with enviromic prediction 
could assist in breeding elite varieties capable of adapting 
to varied environmental conditions (Millet et  al.,  2019). 
Meanwhile, incorporating enviromic prediction for other 
sections along the food supply chain remains to be explored.

Wheat (Triticum aestivum L.) is the most traded food-use 
commodity. End-use quality traits are of great importance in 
determining usage and trading price. Falling number (FN), 
quantifying the degree of starch degradation by endoge-
nous α-amylases in wheat grain, is one such high-profile 
trait (Steber, 2017). Grain with elevated α-amylase activities 
tend to have lower FN readings. Milled flour from low FN 
wheat grain produces low-quality baked goods and foods 
(Figure S1). Varieties and management practices that reduce 
the risk of low FN are desired by growers to avoid the in-
dustry discount that reduces the sale price. Furthermore, be-
cause of the catalytic nature of α-amylases, a small amount 
of low FN grain will ruin a large quantity of high FN grain 
if mixed. Separate storage of low and high FN grain at ele-
vators is critical, but these decisions must be made quickly 
when tons of grain are received from different production 
fields in a short period during harvest season.

Low FN is triggered by either a pre-harvest sprout-
ing (PHS) or late maturity α-amylase (LMA) event (Hu 
et al., 2022; Mares & Mrva, 2014). PHS could be potentially 
identified via grain morphological changes upon care-
ful inspections, while LMA has not been associated with 
visible indicative grain feature changes. Without reliable 
visible diagnostic features, samples of harvested wheat 
grain from each field must be quantified by the standard 
Hagberg-Perten method for grading. This method, estab-
lished in the 1960s, is time consuming and can only be 
done in laboratories equipped with expensive instruments 
operated by trained specialists (Figure S1). During harvest 
season, massive quantities of grain samples are sent to cer-
tified laboratories for quantifying FN. The overwhelming 
workload and complexity of the test procedure prolongs 
the final sale price determination and, most importantly, 
fails to provide storage or blending guidance for elevators. 
Forecast models capturing trait trends would be beneficial 
to overcome such informatics bottlenecks.

Here, we proposed and demonstrated the enviromic 
prediction strategy for informed decisions by using wheat 
FN as an example (Figure 1). Leveraging long-term variety 
testing trial records, we trained an enviromic prediction 
model capturing the general FN trend from production 
fields. Two applications were further developed to depict 
how such a predictive model can guide informed deci-
sions in the food supply chain.

2   |   MATERIALS AND METHODS

2.1  |  Contemporary low throughput 
falling number (FN) test procedure

FN is a critical measurement for grain quality, which 
not only determines the final sale price but also guides 
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the blending practices (Perten,  1964). The FN test for 
the harvested grain was conducted based on the es-
tablished protocol according to the AACC Method 
56-81.03A (1999) from 2012 to 2017, and then accord-
ing to AACC Method 56-81.04 (2018) from 2018 to 2021 
(Hagberg,  1960; Perten,  1964). The difference between 
the two methods is the change in FN correction for baro-
metric pressure. Briefly, 25 g of wheat grain was milled 
into 2 oz airtight glass jars using a UDY Cyclone Mill 
(Hauvermale et al., 2023; Sjoberg et al., 2020). The sam-
ple weight for the FN test was adjusted to the equiva-
lent of 7 g at 14% moisture, placed into a glass FN tube, 
and mixed with 25 mL of distilled water. There were 
two technical replicates for each sample. Samples were 
mixed on a shaker for 5 s and then transferred into the 
Hagberg-Perten FN Apparatus (Perten Instruments) to 
measure FN.

2.2  |  Plant material and cultural data

Each year, the Washington State University Cereal Variety 
Testing Program grows a set of hard spring wheat varie-
ties (the majority are hard red) to evaluate yield and other 
critical agronomic traits. These are elite and advanced ex-
perimental varieties from both public and private breed-
ing programs. The same set of varieties were planted in 
multiple sites across the main wheat-growing region in 
Washington State. The testing sites were managed accord-
ing to local standard farming practices. The cultural in-
formation, including planting date, harvesting date, field 
location (latitude and longitude coordinates) documented 
in the publicly accessible annual reports (https://​small​
grains.​wsu.​edu/​varie​ty/​archi​ves/​), was recompiled into a 
database. Not all tested varieties from all locations were 
used for the FN measurement.

A set of 13 spring wheat varieties were planted in the 
same field (Pullman, WA) in 2021 twice: April 1st and May 
3rd and managed as in Liu et al. (2021). None of these va-
rieties had been evaluated in the Cereal Variety Testing tri-
als. Grain from each variety after maturity were harvested 
and measured for FN to estimate the average mean of FN 
from each planting.

2.3  |  Modeling FN with the 
environmental index identified by CERIS

The number of replications for each tested variety from 
each environment varied from 1 to 2. FN readings of each 
variety from each environment were deposited at the 
PNW Falling Numbers website (http://​stebe​rlab.​org/​proje​
ct7599.​php). R vca package was used to partition the FN 
variance into environment, genotype, and their interaction 
with replicated observations in individual environments.

To identify environmental indices strongly correlated 
with the expected FN readings from each field, a whole-
season enviromic variable matrix including potential en-
vironmental factors was compiled. One environmental 
factor was defined as an environmental parameter from 
a period of growth window, such as the average tempera-
ture from 10 to 20 days-after-planting (DAP). Four pri-
mary daily environmental parameters, day length (DL, 
h), daily minimal temperature (Tmin, °F), daily maxi-
mal temperature (Tmax, °F), and precipitation (PR, mm), 
were used to derive other composite environments, in-
cluding GDD = (Tmax + Tmin)/2–32, DTR = Tmax − Tmin, 
PTT = GDD × DL, PTR = GDD/DL, PRDTR = PR/DTR. 
Day length of each location was calculated with R geo-
sphere package, while Tmin, Tmax, and PR were retrieved 
from the NASA Langley Research Center Power Project 
(https://​power.​larc.​nasa.​gov/​) database using R nasapower 

F I G U R E  1   Enviromic prediction overcomes the bottleneck for informed decisions along the food supply chain.
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package based on latitude and longitude coordinates 
(Sparks, 2018). Critical environmental regressor through 
informed search (CERIS, https://​github.​com/​jmyu/​
CERIS_​JGRA) was applied to uncover the environmen-
tal index strongly correlated with the mean FN readings  
(Li et  al.,  2021). The environmental parameter with the 
strongest correlation with FN was defined as the envi-
ronmental index, which was used to model and predict 
the FN. To test the robustness of environmental mean 
estimates, three sets of the FN mean from each environ-
ment were estimated: the first set was calculated from all 
the tested varieties, the second set was calculated from 
the commonly tested varieties with FN from more than 
44 environments, and the third was calculated from the 
sporadically tested varieties with FN from less than 21 
environments.

2.4  |  Predicting FN observed in the 
variety testing trials

Replacing the environmental mean, the explanatory vari-
able used in the Finlay-Wilkinson regression model, with 
the identified environmental index by CERIS enables trait 
prediction in new environments (Eberhart & Russell, 1966; 
Finlay & Wilkinson, 1963; Li et al., 2021). Specifically, FN 
at the variety level was modeled as yij = ai + bi × EIj + eij, 
where yij is the measured FN reading for the ith variety at 
the jth environment, ai is the intercept for the ith variety, 
bi is the slope for the variety, EIj is the identified environ-
mental index by CERIS from the jth environment, and eij 
is the residual.

To evaluate this predictive model, the k-fold cross-
validation scheme was conducted. All 51 environments 
were randomly split into k chunks with equal number 
of environments (51/k). Sequentially, each chunk was 
treated as testing data, while the remaining chunks were 
training data to build the model and predict the perfor-
mance of varieties in the testing data. Three folds, 5, 10, 
and 51, were tested, where 51-fold equivalates to leave-
one-environment-out cross-validation. The prediction 
accuracy, Pearson correlation coefficient, was calculated 
after all k chunks were predicted, i.e., the Pearson correla-
tion coefficient was reported based on all 51 environments. 
For 5- and 10-fold, 10 iterations of randomly splitting were 
conducted. Three different thresholds (5, 10, and 20) of 
minimum tested environments were applied to filter the 
varieties in the training dataset. For the cross-validation 
scheme, the same environmental index identified with all 
51 environments was used to simplify the process.

The forecasting models were developed by separating 
environments based on the growing season into training 
and testing environments. The first model was trained 

with environments from 2012 to 2017 to predict the FN 
since 2018. The second model was trained using data from 
2012 to 2018 to predict the FN since 2019. The correspond-
ing environmental index was identified with respective 
training datasets only by CERIS. The model for each va-
riety was trained and used to forecast FN in new growing 
seasons at different sites. Besides the prediction accuracy, 
the ratio between measured and predicted FN for each va-
riety in the new environment was also calculated. A ratio 
of 1 indicates the predicted value is the same as the ob-
served value.

2.5  |  Predicting FN from production  
fields

The average FN for each environment was modeled as 
yj = a + b × EIj + ej, where yj is the expected FN from any 
wheat growing at the jth environment, a is the intercept, 
b is the slope, EIj is the environmental index from the 
jth environment, and ej is the residual. This model was 
trained with the 51 environments from the Washington 
State Cereal Variety Testing trial and used to predict the 
expected FN from the two-plantings experiment, the sim-
ulated planting date at a specific location across 10 years, 
and the overview of the FN trend from production fields 
across a large geographic region in 2021. For each tested 
environment, the planting date, either known, simulated, 
or estimated based on Normalized Difference Vegetation 
Index (NDVI) dynamics, and the GPS coordinates were 
fed into CERIS to calculate EIj and predict the FN.

Two satellite imagery databases were combined to 
estimate the planting date of each spring wheat pro-
duction field in 2021. The coordinates and the total 
acreages of spring wheat fields were obtained from the 
USDA CroplandCROS explorer (Boryan et  al.,  2011). 
The weekly NDVI dynamics of 2022 from the same 
regions were obtained from the Vegetation Condition 
Explorer VegScape (Yang et  al.,  2013), which aggre-
gates NDVI values from the National Aeronautics Space 
Administration's MODIS satellite. Both CroplandCROS 
and NDVI geospatial data (weekly) were downloaded 
in the GeoTIFF format with the resolution of 30 m per 
pixel and 250 m per pixel, respectively. The NDVI val-
ues, which ranged from −1 to 1, of spring wheat fields 
defined by CroplandCROS were retrieved by overlay-
ing the GeoTIFF images through the R package raster. 
The time-series dynamics of NDVI, which is associ-
ated with crop photosynthesis activity, has been widely 
used to predict crop phenology and growth (Moriondo 
et al., 2007; Wang et al., 2021). NDVI values of 49 weeks 
of each pixel field were smoothed with the loess func-
tion. Pixels with the highest fitted NDVI value less than 
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0.5 were removed. The planting date of each field was 
broadly defined as 7 weeks before the week with the 
highest fitted NDVI. The actual planting dates in 2021 
from 13 Washington State University Program locations, 
which generally cover the wheat-growing area, were 
used to verify the accuracy of estimated planting dates 
based on NDVI dynamics.

3   |   RESULTS

3.1  |  Enviromics-based approach to 
predict high-profile traits for making 
informed decisions

Low-throughput phenotyping technologies for high-
profile traits impede the timely delivery of critical trait 
values needed for informed decisions throughout the 
food supply chain. Given that environmental conditions 
are the primary driver for crop performance fluctuation 
in production fields, we reasoned that enviromic predic-
tion models, which predict trait values based on weather 
conditions, could effectively address this bottleneck and 
enhance decision support (Figure  1). Enviromic predic-
tion models can be standalone for the resolution at the 
environment level, or seamlessly integrated with genomic 
prediction models to reach the variety level resolution. 
With existing infrastructures, including weather profile 
databases and satellite imagery databases, building envi-
romic prediction models to forecast and monitor crop per-
formance across large geographic areas is possible.

3.2  |  Developing enviromic prediction 
model from long-term historical variety 
testing trials

We have measured FN for elite hard spring wheat varie-
ties harvested from Washington State University Cereal 
Variety Performance trials. These trials were conducted 
across major wheat growth areas across Washington State 
to provide growers unbiased information for variety per-
formance. From 2012 to 2020, a total of 3384 FN readings 
were recorded for 133 varieties from 51 environments 
(unique combinations of site and season, Table  S1 and 
Figure S2). On average, 33 varieties (ranging from 22 to 
42) were tested in each environment. The readings at the 
variety level ranged from 75 to 576 s (Figure 2a). For varie-
ties with FN records in more than 10 environments, the 
coefficient of variation ranged from 4.7% to 25.6%, indicat-
ing some varieties were stable across environments, while 
others were susceptible to environmental variations. A 
portion of trials had FN records from replicated plots, 

which enabled partitioning of the total variance into the 
environment (40.8%), genotype (19.1%), and their inter-
action (14.7%) (Figure 2b). These results agreed with the 
consensus that FN fluctuations were mainly attributed to 
environment (Sjoberg et al., 2020).

To train a predictive model capturing the environmental 
contribution to FN, we performed Critical Environmental 
Regressor through Informed Search (CERIS), which was 
developed to identify the desired explicit environmen-
tal index that is strongly correlated with environmental 
mean, the average trait value from each environment (Li 
et al., 2021). Despite the unbalanced nature of the dataset 
due to yearly replacement of a portion of old varieties with 
newly developed ones (Figure S2A), subsampling analy-
ses supported that the environmental mean was a robust 
estimate (Figure S2). Based on the planting date of each 
environment, we compiled a whole-season enviromic 
variant matrix with a total of 73,080 potential explanatory 
variables (Li, Guo, et al., 2022). Among these enviromic 
variables, CERIS identified that photothermal time (PTT) 
from 109 to 123 days-after-planting (DAP), or PTT(109–123), 
had the strongest correlation with the mean FN read-
ings (Figure  2c and Figure  S3). The positive correlation 
(r = 0.646, p = 3.027 × 10−7) indicated that hard spring 
wheat experienced higher PTT within this 2-week growth 
window tended to have higher FN readings (Figure 2d). 
For every unit increase of PTT(109–123), an increase of 0.37 s 
FN readings was expected.

We conducted a validation experiment to test the bi-
ological relevance of PTT(109–123) to FN. A new set of 
wheat varieties was planted twice (April 1st and May 3rd) 
at the same location (Pullman, WA) in 2021 (Table  S2). 
PTT(109–123) from the first planting had a value of 716, and 
450 from the second planting (Figure 2e and Figure S4). 
Based on the relationship between FN and PTT(109–123), 
grain harvested from the first planting was predicted to 
have higher FN readings (98 seconds on average) than the 
one from the second planting. The observed mean FN dif-
ference between the two plantings was 92 seconds, similar 
to the predicted (Figure  2f). This experiment indicated 
that this environmental index identified by CERIS was bi-
ologically relevant to FN.

3.3  |  Enviromic prediction forecasted FN

PTT(109–123) was derived from a growth window prior to 
harvesting among 80% of trials (Figure  S5). Therefore, 
a predictive model based on this explanatory variable 
could forecast the FN trend before harvest to facilitate the 
decision-making process. We first tested cross-validation 
scenarios by randomly splitting the 51 environments 
as training or testing. The leave-one-environment-out 
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cross-validation had a prediction accuracy of 0.624 and 
the average ratio between measured and predicted FN 
was 1.002 (with a standard deviation of 0.122) at the va-
riety level (Figure S6A). The similar level of prediction 
accuracy from the 5- and 10-fold cross-validation (with 
less training samples) supported the robustness of this 
enviromic prediction model capturing the FN trend 
(Figure S6B–H).

We then tested a series of forecasting scenarios based 
on PTT(109–123) to predict FN by splitting the training 
and testing dataset based on growing season. The first 
forecast model was trained with data from 2012 to 2017 

to predict the FN trend for growing seasons after 2018. 
The second forecast model was trained with data from 
2012 to 2018, which reflected the practice of updating 
forecast models with new available data. Because only 
two sites in 2020 had FN records, we didn't update the 
forecasting model by including 2019 data to predict 
2020. The prediction accuracies ranged from 0.42 to 
0.58 (Figure 3a). Meanwhile, the average ratio between 
measured and predicted values for each variety was 
0.97 ± 0.13 (Figure 3b). These statistics suggested these 
predictive models captured the general trend of FN in 
new environments.

F I G U R E  2   Enviromic prediction for FN. (a) Fluctuation of FN readings from testing trials spanning a large temporospatial scale. 
Environments are positioned on the x-axis based on growing season and alphabetic order of testing sites. Each line connects the FN readings 
of the same variety in different environments. (b) The environmental term was a major contributor to FN variation. (c) PTT(109–123) had 
the strongest correlation with the average FN. (d) Environments with higher PTT(109–123) generally had higher FN readings. Dot shapes 
denote testing sites, while the gray numbers indicate the growing seasons (such as 12 for 2012). (e) PTT profiles (2-week average) from two 
plantings at the same location in 2021. Blue line represents the first planting in April, while red line represents the second planting in May. 
The shaded area indicates the growth period of 109–123 days after planting. (f) PTT(109–123) explained the FN difference between two planting 
dates. Gray dots are the observed FN reading for tested varieties. Triangles show the average FN readings.
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F I G U R E  3   Enviromic prediction models to forecast trait trend in new season. (a) Prediction accuracy of FN in new growing seasons. 
(b) Distribution of the ratio between measured and predicted FN at the variety level. A ratio equal to one indicates the predicted FN is the 
same as the measured value.

F I G U R E  4   A potential application for the predictive model is using historical weather profiles to recommend the optimal planting dates 
at a specific location with the lowest risk of FN issues.
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3.4  |  Applications of enviromic 
prediction for production fields

We developed two applications to illustrate how such pre-
dictive models might facilitate decision-making regarding 
high-profile traits. The first application predicted the FN 
trends from specific locations for potential planting dates 
in spring (Guo et al., 2023). For each field, PTT(109–123) was 
calculated with the potential planting dates in each year 
from 2012 to 2021 and used to predict FN. Variation of 
predicted values based on historical weather profiles over 
a decade was used to recommend the optimal planting 
dates with the lowest risk for FN. For instance, the op-
timal planting date at Lind would be the week of March 
29 (Figure 4). Predicted results from other locations also 
revealed a trend that planting earlier would more likely 
result in higher FN values than planting later (Figure S7).

The second application predicted FN from produc-
tion fields across large geographic regions by integrating 
publicly accessible agricultural satellite imagery data-
bases: USDA CroplandCROS (Figure S8) and Vegetation 
Condition Explorer VegScape (Figure S9). In 2021, spring 
wheat was grown on about 626,613 acres (2535.81 km2) in 
Washington State. To predict FN from each field, we first 

estimated the most likely planting date. Using the docu-
mented variety testing trial in 2021 (13 sites), we found 
the dynamics of Normalized Difference Vegetation Index 
(NDVI) across the season could be used to infer the plant-
ing dates (Figures  S10 and S11). We were able to infer 
planting dates for ~50% of spring wheat fields, which 
allowed us to calculate PTT(109–123) values to predict FN 
for these fields (Figure 5 and Figure S12). This prediction 
showed that, in 2021, FN from ~8% of spring wheat fields 
would be potentially lower than 300 seconds. Such an in-
season, site-specific, and real-time trait trend overview 
might help grain elevator companies and FN laboratories 
to prepare logistic plans.

4   |   DISCUSSION

Sustaining the complex agricultural industry depends on 
timely and objective decisions based on trait values for 
crops harvested from production fields. Because of varied 
trait values across fields, high-throughput phenotyping 
methods efficiently measuring traits across large produc-
tion fields are highly desired for timely informed decisions 
for the agricultural industry. While such methods are 

F I G U R E  5   A potential application of predicted FN overview for spring wheat production fields. The fields were color-coded based on 
the predicted FN. The inset showed the predicted FN for potential planting dates (±10 days) around the estimated planting date for two 
randomly selected fields. The black circles indicate the variety of testing sites used in Figure S10.
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under active development, enviromics-based approaches 
to predict trait trends could be an alternative because en-
vironmental conditions are a major contributor to trait 
fluctuations.

Models and simulations using historical or forecasted 
weather data have been built and conducted to predict 
crop yield in a large-scale geographic region (Gardner 
et  al.,  2021; Li, Wang, et  al.,  2022). Most of these stud-
ies trained models with a large number of independent 
weather variables. In contrast, the prediction model pre-
sented here was trained with a single independent weather 
variable, or an environmental index, PTT(109–123). The bi-
ological relevance of this variable to the trait of interest 
was further verified by a two-planting date experiment in 
a new growing season. Therefore, our predictive model 
was not only able to capture trait trends but also shed new 
insights on how environmental conditions contribute to 
traits of interest in finer detail.

Previous studies suggested that including multiple 
environmental indices might further increase prediction 
accuracy (Hardwick & Wood, 1972; Li, Guo, et al., 2022; 
Piepho & Blancon,  2023). In this study, among all the 
tested environmental variables, only PTT(109–123) passed 
the significance threshold. Therefore, we did not in-
clude other environmental variables in the prediction 
model. As variety performance is also influenced by 
genetic constituents, if genotype information is avail-
able, integration of genetic marker and environmental 
index would be able to predict performance of untested 
varieties in new environments. One approach is train-
ing genomic prediction models to predict the property 
of phenotypic plasticity of untested varieties, such as 
intercept and slope related to the identified environmen-
tal index, then integrating this property with enviromic 
prediction (Guo et  al.,  2020; Li et  al.,  2018, 2021; Mu 
et al., 2021). However, in this study, genotype data were 
not available, especially for proprietary varieties (almost 
half the tested varieties).

For large-scale production fields, growers typically 
only plant seeds once for each growing season. The timing 
of planting is critical and should be optimized (McDonald 
et  al.,  2022; Qiao et  al.,  2023). Decisions of individual 
growers are made based on multiple factors, including 
recommendation from seed labels, field conditions, and 
forecasted near-term weather conditions. With enviromic 
prediction models, it is possible to predict multiple traits 
of interest through simulating all possible planting dates 
at each field based on historical weather conditions. A 
composite index based on predicted traits could offer an-
other layer of information to jointly decide the best timing 
of planting. Furthermore, the computational efficiency of 
these types of explainable enviromic prediction models 
permits the integration of other dataset, such as satellite 

imagery databases (Resende et al., 2024), to develop appli-
cations for large-scale production fields.

Developing a robust predictive model requires a large 
training dataset. This proof-of-concept case leveraged 
well-documented long-term historical records, which 
have been used to unveil the intricate relationship be-
tween crop performance and climatic conditions (Bonecke 
et al., 2020; Laidig et al., 2017; Li, Guo, et al., 2022). As 
conducting variety testing trials has been an essential 
component in breeding programs, the proposed envi-
romics concept of integrating long-term crop performance 
records and weather databases can be widely applied to 
other traits and crops. For high-profile traits lacking avail-
able historical records, acquiring a large training dataset 
is achievable through coordinated trials across large loca-
tions within a few years.

5   |   CONCLUSION

The threats from rapidly changing climatic conditions 
to global food security are multi-faceted. Informed deci-
sions based on crop performance, which fluctuates among 
fields, locations, and seasons, are essential for maxi-
mizing profit margins. For critical traits awaiting high-
throughput phenotyping technologies, we proposed and 
demonstrated enviromic prediction as a potential strategy 
to capture the general trends of high-profile traits to assist 
decision-making. The availability of infrastructure, such 
as weather stations, satellite imagery databases, Internet 
of Things, and artificial intelligence analytics (Negus 
et  al.,  2024), makes it possible to generate forecasts for 
other high-profile traits and provide practical guidance for 
informed decisions for the agricultural industry.
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